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Abstract

This thesis presents an empirical investigation into the performance opti-
mization of sparse matrix multiplication on NVIDIA GPUs using sparse
Tensor Cores. While sparse Tensor Cores offer theoretical throughput
improvements for matrices with 2:4 sparsity patterns, their effectiveness
in real-world applications depends critically on matrix structure. This
work implements and evaluates multiple optimization strategies includ-
ing sparse Tensor Core utilization, pipelining, tiling, and the separation
of dense and sparse processing. Through comprehensive benchmark-
ing on both synthetic and real-world matrices from the SuiteSparse col-
lection, we demonstrate that sparse Tensor Cores can achieve over 2×
throughput improvement for compliant matrices. Our analysis reveals
that while many real-world matrices fail to meet the stringent 2:4 sparsity
requirements (e.g., the SuiteSparse cant matrix with only 7.8% qualifying
blocks), others contain sufficient compliant blocks to benefit substantially
from our optimizations. The novel mmaOBTS_large_separate kernel,
which eliminates runtime branching through preprocessing-based seg-
regation of dense and sparse tiles, successfully combines sparse Tensor
Cores with pipelining optimizations and achieves the highest perfor-
mance across all qualifying matrices. For real-world matrices with sig-
nificant 2:4 sparse content (such as mip1 with 33.8% compliance), our
combined approach outperforms traditional methods, while pipelining
alone remains the most robust optimization for matrices with limited 2:4
sparsity. This work demonstrates that sparse Tensor Cores, when prop-
erly integrated with complementary optimizations, provide meaningful
acceleration for a subset of real-world applications, offering insights for
future developments in GPU sparse computation.
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Chapter 1

Introduction

The problem of matrix multiplication has gathered a large amount of attention
in recent years due to the exponential growth of machine learning applications.
While substantial research focus has been directed toward optimizing dense
matrix multiplication, sparse matrix multiplication (SpMM) has emerged
as an increasingly critical operation. This growing importance stems from
advancements in sparse transformers, mixture of experts (MoE) models, and
Graph Neural Networks (GNNs). Furthermore, sparse matrix multiplication
has long been fundamental in scientific computing domains such as Finite
Element Methods (FEM) and Computational Fluid Dynamics (CFD), as well
as in data-intensive applications like Graph Analytics.

Building on the work of Okanovic et al. [1], we ask: can 2:4-sparse Tensor
Cores, in combination with other optimizations, deliver ≥1.5× speed-up over
the state-of-the-art dense-core BCSR SpMM on matrices with ≥30% sparse-
compatible tiles? To answer this, we explore a broader range of matrix config-
urations and evaluate how effectively Sparse Tensor Cores can be leveraged to
improve computational efficiency under realistic sparsity conditions.

While this work focuses exclusively on NVIDIA GPUs, AMD has introduced
comparable hardware support for sparse matrix multiplication through its
SparseMatrix FusedMultiply-Accumulate (SMFMA) instructions in theCDNA
architecture [2]. These instructions impose similar structural sparsity con-
straints—such as fixed 2:4 sparsity patterns—making the techniques presented
in this thesis potentially applicable to AMD hardware as well. However,
NVIDIA was chosen as the target platform due to its mature CUDA ecosystem,
superior developer tooling, and broader adoption in scientific computing and
machine learning workloads. This also enables direct comparison with prior
libraries and research, which predominantly evaluate performance onNVIDIA
GPUs.
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1. Introduction

1.1 The GPU

The GPU is designed for extreme parallelism, which is reflected in its hard-
ware architecture (see Figure 1.1). While CPUs consist of a relatively limited
number of sophisticated cores, GPUs are composed of numerous Streaming
Multiprocessors (SMs) [3]. Contemporary deep learning GPUs, such as the
NVIDIA A100 80GB used in the benchmarks for this work, feature 108 SMs
[4]. Each SM incorporates various storage and compute units, including Arith-
metic Logic Units (ALUs)—also referred to as CUDA cores—that support
different numerical formats, and specialized Tensor Cores, which will be dis-
cussed in greater detail later [3]. The parallel processing capabilities of GPUs
make them particularly well-suited for matrix multiplication operations, as
these computations can be effectively distributed across the many processing
elements. This architectural advantage enables GPUs to achieve substantially
higher throughput for the computationally intensive workloads characteristic
of modern machine learning and scientific computing applications.

The extreme throughput of the GPU makes efficient memory flow optimiza-
tion critical to maintaining high utilization of its compute units. To achieve
this, GPU programming frameworks like CUDA allow programmers signifi-
cantly greater control over caching mechanisms compared to traditional CPU
programming.

At the lowest level is the DRAM, also referred to as global memory in CUDA.
This ranges from up to 24GB on consumer cards to as much as 128GB on
modern NVIDIA deep learning GPUs. Global memory serves as the initial
repository for data transferred from the host’s main memory. The second level
is the L2 cache, which is substantially smaller—typically by a factor of approx-
imately 1000—but offers reduced access latency. The L1 cache, also known as
shared memory, is directly integrated within each individual Streaming Multi-
processor (SM). While the L2 cache population occurs automatically through
the GPU’s memory hierarchy, shared memory must be explicitly managed
by the programmer. Similar to CPU architecture, the lowest access latency is
achieved through registers, which are stored in the register file on each SM.
Table 1.2 is a summary of the A100 memory hierarchy and its characteristics.

This memory hierarchy creates opportunities for performance optimization
through careful data movement strategies, allowing programmers to minimize
high-latency global memory accesses and maximize the use of faster local
storage. Effective management of this memory hierarchy is particularly crucial
for memory-bound operations like sparse matrix multiplication, where com-
putational performance is often limited by memory bandwidth rather than
arithmetic throughput.
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1.1. The GPU

Figure 1.1: Architecture of an NVIDIA A100 SM [5]

Memory Type Size Latency Location
Registers 256 KB per SM 1–2 cycles SM
L1 Cache + shared mem. 192 KB per SM (combined) 30–60 cycles SM
L2 Cache 40 MB 300-400 cycles On-chip
HBM2 Memory 80 GB 400–1000 cycles On-package

Figure 1.2: Memory hierarchy of an NVIDIA A100 80GB [4]

1.1.1 The GPU programming model

InCUDA,GPUprograms are structured around amassive number of lightweight
threads, organized in a hierarchical model. At the lowest level, each thread
runs independently with its own registers and program counter. Threads
are grouped into warps—typically 32 threads—which follow the Single In-
struction, Multiple Threads (SIMT) execution model: all threads execute the
same instructions in lockstep. These warps are further organized into thread
blocks, also known as Cooperative Thread Arrays (CTAs). All warps of a
thread block run on the same SM, so they all have access to the same shared
memory, making it the primary mechanism for sharing memory between
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1. Introduction

threads. Threads within a thread block can synchronize with each other using
barrier functions. Multiple blocks form a grid, which represents the full scope
of a kernel’s execution. The grid enables large-scale parallelism by allowing
thousands or even millions of threads to work concurrently across the GPU.
While threads within a block can cooperate via shared memory and synchro-
nization, blocks in a grid execute independently, with no guaranteed order or
direct communication—making them ideal for data-parallel tasks that can be
decomposed into uniform, independent units of work.

1.1.2 Sparse Tensor Cores

As matrix multiplication has become a primary use case of GPUs, NVIDIA
has introduced dedicated hardware for this problem starting with the Volta
architecture in 2017. These Tensor Cores are dedicated units of each SM which
operate on fixed-size matrix tiles of A, B and C to perform the calculation
of AxB+C. Tensor Cores offer improved performance and compute density
by minimizing control overhead; whereas thread-based matrix multiplica-
tion incurs per-thread overhead, Tensor Cores execute the operation with a
single, shared control path. Therefore, more transistors can be dedicated to
the computation itself rather than control. The trade-off is increased kernel
complexity since tiling of larger matrices becomes necessary; however, such
tiling is typically implemented in thread-based approaches as well to enhance
memory efficiency. Additionally, the Tensor Core instruction breaks the previ-
ously described model of threads operating independently on different data,
requiring explicit warp-level collaboration: all 32 threads in a single warp
need to call the Tensor Core simultaneously, with each thread providing part
of the information. This is done by calling an instruction in the PTX language,
an intermediate representation that CUDA code compiles to. In our code, this
instruction is embedded as inline PTX into the CUDA source code using a C++
macro.

Tensor Cores predominantly support lower-precision floating-point formats,
such as 16-bit (FP16) or 8-bit (FP8) representations, as these reduced-precision
formats have become increasingly prevalent in machine learning applications,
offering an acceptable trade-off between numerical precision and computa-
tional efficiency.

With the Ampere architecture, released in 2020, NVIDIA introduced sparse
Tensor Cores, expanding the functionality of Tensor Cores to accommodate
sparse matrices. These specifically address the scenario where matrix A is
sparse, while matrices B and C remain dense. The primary advantage of sparse
Tensor Cores is twofold: they offer reduced runtime for computations with
identical tile sizes compared to dense Tensor Cores, and they maintain equiva-
lent runtime when processing tile sizes twice as large. For instance, with FP16
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1.2. Sparse Matrix Formats

format, dense Tensor Cores performmultiplications with dimensions 16×8×16,
whereas sparse Tensor Cores efficiently handle dimensions of 16×8×32.
However, sparse Tensor Cores impose significant constraints on the structure
of sparsity: they exclusively support 2:4 sparsity patterns. This means that
within groups of four consecutive values in the original matrix tile, at least two
elements must be zero. Matrix A is supplied to the Tensor Core instruction as a
dense tile of half the original size containing all non-zero values, accompanied
by an additional metadata vector that indicates the positions of these values
within each group of four elements. This format is visualized in Figure 1.3.
This architectural limitation stems from the underlying hardware implementa-
tion (see Figure 1.4): sparse and dense Tensor Cores utilize the same arithmetic
logic units (ALUs) for multiplication operations, with a specialized decoder
selecting the corresponding values frommatrix B using the providedmetadata
vector prior to the operation. This approach requires only minimal additional
decoder hardware and incurs little overhead due to the simplicity of the de-
coding mechanism. Additionally, the size of each memory load is halved for
the same tile size, as only nonzero values of A and B are loaded. While this 2:4
sparsity format imposes structural constraints on compatible matrices, it repre-
sents an effective compromise between hardware complexity and performance
enhancement for appropriately structured sparse matrices.

Figure 1.3: Input format of sparse Tensor Core instruction [6]

1.2 Sparse Matrix Formats
Many sparsematrix formats have been proposed in the past, such asCoordinate
List (COO) or Compressed Sparse Row (CSR). While these formats achieve
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1. Introduction

Figure 1.4: Hardware implementation of sparse Tensor Core [7]

optimal information density, they are unsuitable for high-performance GPU
implementations. Exploiting cache hierarchies and leveraging Tensor Cores in
modern GPUs requires blocking techniques, which these traditional storage
formats generally do not support natively.

With sparse matrices, blocking introduces an inherent tradeoff between sparse
compression effectiveness and tile size—as tile sizes increase, more zero ele-
ments must be stored explicitly, reducing the storage benefits of sparse repre-
sentation. For our implementation, we utilize the Block Compressed Sparse
Row (BCSR) format, which extends the traditional CSR format with blocking
capabilities (see Figure 1.5). In BCSR, the row pointers and column indices
reference blocks rather than individual elements, operating at the block level
instead of the scalar level. Initially, we align our blocking factors with the
dimensions of Tensor Core tiles, i.e. 16x16 in the dense and 16x32 in the sparse
case.

This approach allows us to balance the competing demands of sparse storage
efficiency and computational performance on GPU architectures. By structur-
ing our sparse data in block-oriented formats compatible with Tensor Core
operations, we can more effectively harness the computational capabilities
of modern GPUs while still benefiting from reduced memory requirements
compared to dense representations.

6



1.3. Problem Setup

Figure 1.5: BCSR Format Visualization

1.3 Problem Setup
For the research problem addressed in this thesis, matrix A exhibits static
or infrequent changes, allowing for comprehensive preprocessing operations
including conversion to BCSR format and 2:4 sparsity pattern verification. This
preprocessing phase is followed by multiple matrix multiplication operations
using varying instances of matrix B.
The sparse matrix A features substantial dimensions, with performance evalu-
ations spanning sizes from 2048×2048 to 16384×16384 elements. This matrix
undergoes partitioning into tiles that fall into three distinct categories: fully
sparse tiles containing exclusively zeros, 2:4 sparse tiles that conform to Tensor
Core requirements, and dense tiles with predominantly non-zero values. The
experimental framework incorporates various compositional arrangements
with different proportions of these tile types to thoroughly assess performance
across sparsity patterns.
The dense matrix B is characterized by its narrow profile, with benchmark
configurations ranging from the width of a single Tensor Core tile up to 16
tiles. This configuration reflects common computational patterns found in
scientific computing, where a large sparse matrix is multiplied by a relatively
narrow dense matrix.
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1. Introduction

1.4 PreviousWork
The usage of Tensor Cores for sparse matrices has been explored before, mainly
focusing on specific matrix formats and usecases. Magicube [8] is a library de-
signed specifically for deep learning. It therefore only supports lower-precision
integers up to 8 bits. DASP [9] only supports matrix-vector multiplication.

1.4.1 Magicube
Magicube [8] is a specialized SpMM library developed specifically for deep
learning applications. It employs a block-sparse matrix storage format, though
with a strided variant that differentiates it from standard BCSR implemen-
tations. Reflecting its focus on deep learning workloads, Magicube operates
exclusively with reduced-precision numerical formats that are prevalent in this
domain, supporting only up to 8-bit integer precision as its highest-precision
format. This specialization allowsMagicube to achieve optimized performance
for deep learning inference and training, though it limits its applicability to
scientific computing domains that require higher numerical precision.

1.4.2 DASP
DASP [9] relies heavily on preprocessing, where it first divides the sparse ma-
trix rows into three different categories depending on the number of nonzero
values, after which it processes it using different strategies for each category.
It supports FP16 and FP64 number formats and only supports Sparse Matrix-
Vector Multiplication (SpMV).

1.4.3 NVIDIA cuSPARSE
NVIDIA cuSPARSE [10] is a general-purpose sparse matrix library that suffers
from significant performance limitations [8] [9] [11], often failing to sub-
stantially outperform equivalent dense algorithms implemented in NVIDIA
cuBLAS [12], particularly when processing highly sparse matrices (greater
than 99% sparsity). These performance constraints can be attributed to several
key factors, including its reliance on the non-blocked CSR format and its failure
to leverage Tensor Cores, instead utilizing only CUDA cores for computation
[13].

1.4.4 NVIDIA cuSPARSELt
NVIDIA cuSPARSELt [14] is specifically designed for structured sparsity in
deep learning workloads. It utilizes sparse Tensor Cores, however it only
works on fixed sparsity patterns.

8



1.4. Previous Work

1.4.5 SpInfer
SpInfer [15] is a library designed specifically for large language model infer-
ence using SpMM. It utilizes bitmaps for encoding the sparse matrix. Its per-
formance falls behind other solutions at extreme sparsity levels (>=99.97%),
as it does not optimize for these sparsity levels due to its focus on LLMs.

1.4.6 SMaT
SMaT [16] is a library for SpMM using Tensor Cores and is the starting point
of the optimizations introduced in this thesis. It includes several kernels that
iteratively add several optimization techniques which are detailed below.

mmaT

The first kernel employing Tensor Cores, mmaT.cu, utilizes a two-dimensional
grid structure where each thread block is responsible for computing a single
tensor-core tile of matrix C. As previously established, invoking a Tensor Core
instruction requires a warp of 32 threads; consequently, we assign a single
warp to each thread block. To calculate the values within its designated tile,
each thread block must iterate through the corresponding tile row of matrix
A, multiplying each tile with its matching tile from matrix B, accumulating
the results, and ultimately writing the final values to matrix C. Figure 1.6
visualizes this process.
During each iteration, the kernel first determines whether the current tile
in A consists entirely of zeros or contains non-zero values by consulting a
providedmetadata array. If the tile is completely zero, the iteration is bypassed.
Otherwise, the calculation proceeds through a three-phase process: initially,
the threads collaboratively transfer the tile from global memory to shared
memory. Subsequently, each thread loads its specific portion of the tile—the
data it will contribute to the Tensor Core instruction—into its thread-local
registers. Following this, the threads collectively execute the Tensor Core
instruction, with the resulting values being accumulated in the thread-local
C registers. After completing all iterations, the accumulated values in the C
registers are transferred back to shared memory, from which the entire shared
memory tile is written to the corresponding location in global memory.

mmaBT

While the initial kernel skipped iterations when encountering tiles composed
entirely of zeros, this kernel, mmaBT, fully leverages the row pointer and column
index arrays provided by the BCSR matrix format. Rather than checking and
potentially skipping zero tiles, it directly iterates through non-zero tiles by
traversing the section of the column index array corresponding to the relevant
row, obtaining the starting and ending positions from the row pointer array.
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1. Introduction

Figure 1.6: Matrix layout and computation - the arrows show themainloop that is executed
by a single warp

This approach eliminates unnecessary iteration attempts, focusing computa-
tional resources exclusively on tiles containing actual data, thereby improving
efficiency.

mmaCBT

This kernel enhancesmemory transfer efficiency by implementing asynchronous
memory copies. While the conventional process of global-to-shared memory
loads requires an intermediate copy into registers, the asynchronous mem-
ory copy mechanism bypasses this step by utilizing Direct Memory Access
(DMA). Furthermore, the asynchronous nature enables temporal overlapping
of A and B matrix copies, further accelerating memory movement. It is im-
portant to note that this kernel does not facilitate the overlapping of memory
operations with computation, as the subsequent shared-to-register loads and
Tensor Core instruction execution remain dependent on the completion of
these global-to-shared memory transfers.
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Chapter 2

Performance Optimizations

Kernel Sp
ar
se

TC

BC
SR

Co
op

.L
oa

ds

Pi
pe

lin
in
g

La
rg
eT

ile
s

Ti
lin

g

De
ns

e/
Sp

ar
se

Se
g.

mmaT
mmaST⇤ X
mmaST_large⇤ X X
mmaBT X
mmaCBT X X
mmaOBT⇤ X X
mmaOBT_tiled⇤ X X X
mmaOBTS⇤ X X X
mmaOBTS_large⇤ X X X X
mmaOBTS_large_separate⇤ X X X X X

Table 2.1: Features of different kernel implementations (* denotes contribution of this
thesis)

Starting from the baseline kernels mmaT, mmaBT, and mmaCBT from Okanovic et
al. [1], this chapter presents a series of optimizations developed in this thesis.
These optimizations are progressively integrated and, where appropriate,
combined to explore their cumulative performance benefits.

2.1 Introduction of Sparse Tensor Cores
The first performance optimization strategywas the utilization of the aforemen-
tioned sparse Tensor Cores. As previously described, tiles must be supplied
in a very specific format for the sparse Tensor Core instruction, necessitating
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2. Performance Optimizations

significant preprocessing for matrix A. A separate preprocessing CUDA kernel
was created for this purpose. For each tile, the nonzero values are packed into
tiles of half the original width, resulting in a sparseMatrixA array of 16×8
tiles. The metadata is supplied by one thread in a group of four as 16 2-bit
vectors packed in a 32-bit integer value. To facilitate this approach, a separate
metadata array is generated by the preprocessing kernel (see Listing 2.1).

To implement the kernel, mmaST.cu, the initial mmaT kernel was modified
and enhanced with a branch in the main loop that depends on the sparsity
of the tile. As in the previous implementation, loop iterations are skipped
entirely for zero tiles, and the dense Tensor Core instruction is called for tiles
that do not fulfill the 2:4 sparsity criteria. For tiles exhibiting 2:4 sparsity, the
corresponding matrix and metadata values are loaded following the same two-
step loading pattern. Subsequently, the sparse variant of the Tensor Core PTX
instruction is invoked (see Listing 2.2). This conditional approach allows the
kernel to adaptively select the most appropriate computation method based
on the sparsity characteristics of each individual tile.

For the next optimization iteration, the focus shifted toward increasing through-
put rather than reducing latency by exploiting the larger tile size capabilities
of sparse Tensor Cores, resulting in the kernel mmaST_large.cu. In this im-
plementation, the tile size was expanded to 16×32, effectively doubling the
width compared to the standard Tensor Core dimensions. To handle dense
tiles within this larger framework, the kernel executes the dense Tensor Core
instruction twice per iteration.

1 half *src = ((half *)((int4 *)(&bcsrValuesA[(relativeIndex)*MMA_M * MMA_K +
2 (lane_id / 2) * MMA_K]) +
3 lane_id % 2));
4 half src_sparse[4];
5
6 char *cur_meta = (Meta_smem[lane_id / 2]) + (lane_id % 2);
7 for (int j = 0; j < 2; ++j) {
8 int cur_src_sparse = 0;
9 src_sparse[0 + (2 * j)] = 0;

10 src_sparse[1 + (2 * j)] = 0;
11 for (int i = 0; i < 4; ++i) {
12 if (src[i + (4 * j)] != (half)0.0f) {
13 src_sparse[cur_src_sparse + (2 * j)] = src[i + (4 * j)];
14 *cur_meta |= i << (6 - (2 * (1 - cur_src_sparse) + (4 * j)));
15
16 cur_src_sparse++;
17 }
18 }
19 }

Listing 2.1: Generation of 2:4 sparsity metadata vector in preprocessing kernel
12
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1 #define HMMA16816_SPARSE(RD0, RD1, RA0, RA1, RB0, RB1, RC0, RC1, RE, CONST) \
2 asm volatile(\
3 "mma.sp::ordered_metadata.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 \
4 {%0, %1}, {%2, %3}, {%4, %5}, {%6, %7}, %8, %9;" \
5 : "=r"(RD0), "=r"(RD1) \
6 : "r"(RA0), "r"(RA1), "r"(RB0), "r"(RB1), "r"(RC0), "r"(RC1), "r"(RE), \
7 "n"(CONST))

Listing 2.2: mma.m16n8k16 Tensor Core instruction in FP16

2.2 Pipelining: Overlap of Memory and Compute
As a further optimization, the memory loading improvements developed
by Okanovic et al. were expanded upon. By utilizing the cuda::pipeline
feature, a two-stage pipeline was implemented to overlap memory operations
and computation (see Figure 2.1). The capacity of each shared memory array
was doubled to accommodate copies for both stages of the pipeline. The kernel
initially populates both pipeline stages by loading the first two tiles from global
memory to shared memory. Subsequently, the matrix tiles required for the
next iteration of the main loop are loaded to shared memory concurrently with
the shared-to-register loading and execution of the Tensor Core instruction for
the current iteration. One limitation of this approach is the doubled shared
memory consumption, as two complete pipeline stages must reside in memory
simultaneously.

Figure 2.1: Pipeline, idealized with assumption of equal loading and processing latencies

2.3 Separation of Dense and Sparse Processing
Previous approaches relied on runtime branching within the main loop and
load stage to choose between dense and sparse code paths. However, the
presence of branching inhibits the compiler’s ability to reorder instructions,
limiting opportunities to overlap memory operations and computation. In
our case, for example, the global memory load of the column index—which
could otherwise be moved earlier—was constrained to occur after evaluating
the branch condition. Furthermore, this condition itself was derived from the
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2. Performance Optimizations

sparsity information vector stored in global memory, introducing an additional
global load and corresponding latency. Nsight Compute identified this as a
stall during branch condition evaluation (see Figure 2.2). To eliminate this
overhead, the kernel mmaOBTS_large_separate.cu segregates dense and 2:4
sparse tiles into separate arrays during preprocessing and processes them
sequentially in distinct loops, allowing the compiler to fully optimize each
path independently.

Figure 2.2: Nsight Compute profiler screenshot: high stall sampling result of 5.99%
indicates frequent stalls during branch condition evaluation

2.4 Tiling
The fundamental advantage of tiling derives from a mathematical relationship
between computation and memory access patterns. When computing a tile of
dimensions tile × tile in matrix C, the algorithm must load corresponding
rows from matrix A and columns from matrix B of length tile. This creates a
favorable scaling relationship: the computational work increases quadratically
(proportional to tile²), while the memory access requirements increase only
linearly (proportional to 2 × tile).
More specifically, when computing a tile of size tile × tile in matrix C, the
algorithm must load tile rows from matrix A and tile columns from matrix
B. These loaded elements are reused multiple times during computation, with
each loaded element from A being used for tile different calculations and
each loaded element from B likewise being used for tile different calcula-
tions. Since memory loads typically constitute the majority of kernel runtime,
increasing the arithmetic intensity—the amount of computation performed
per memory load—generally yields performance benefits.
This advantageous relationship prompted the investigation of whether intro-
ducing another level of tiling might further enhance kernel performance. The
kernel mmaOBT_tiled.cu implements this concept by adding a blocking factor
BLOCK and loading larger tiles consisting of BLOCK×BLOCK Tensor Core tiles
into shared memory. Instead of processing with a single warp, BLOCK×BLOCK
warps collaboratively process these expanded tiles as part of a single thread
block (see Figure 2.3). The larger tiles are created in the preprocessing stage
by merging adjacent nonzero tiles.

14



2.4. Tiling

For densematrices, this hierarchical tiling strategy almost universally improves
performance, and the blocking factor should be maximized within the con-
straints of available shared memory. However, in sparse matrices, the tiling
factor represents a critical trade-off: increasing the tile factor inevitably leads
to a higher number of explicitly stored zero subtiles, which rapidly dimin-
ishes returns as the blocking factor increases (see Figure 2.4). This occurs
because larger sparse tiles tend to encompass more empty regions, reducing
the efficiency gained from the improved arithmetic intensity.

Figure 2.3: Illustration of mainloop for tiled kernel
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Figure 2.4: Explicitly stored zeros increase with tile size
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Chapter 3

Benchmarks

3.1 Experimental Setup

Component Specification
GPU NVIDIA A100 80 GB

80 GB HBM2e ECC Memory
6912 CUDA Cores
432 3rd-Generation Tensor Cores

CPU AMD EPYC 7742 64-Core Processor
4 Cores, 8 Threads dedicated to VM
2 MiB L2 Cache (4 instances)
16 MiB L3 Cache (1 instance)

SystemMemory 128 GB
Operating System Ubuntu 24.04.1 LTS
CUDA Version CUDA 12.7
Compiler GCC 13.3.0 (Ubuntu 13.3.0-6ubuntu2~24.04)

Compilation flags: -O3 -arch=sm_80
Table 3.1: Hardware and software configuration used for benchmarking

3.1.1 Benchmark Methodology
All experiments1 were conducted on the hardware configuration detailed in
Table 3.1. Each kernel was executed 10 times, with the median execution time
reported. The throughput metric represents TFLOPS (trillion floating-point

1Source code available at: https://github.com/ajit283/sptc-smat
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3. Benchmarks

operations per second), calculated as

Throughput (TFLOPS) =
2nnzbMtile Ktile NMULT

t⇥ 1012

for our N ⇥N matrices.

3.1.2 Matrix Variants
Synthetic matrices

To evaluate kernel performance under controlled circumstances, the bench-
mark suite utilizes a collection of synthetic matrices with defined sparsity
patterns. Each matrix consists of 16x32 tiles characterized as either:

• Zero tiles (containing no non-zero elements)
• 2:4 structured sparse tiles (following the NVIDIA 2:4 sparsity pattern)
• Dense tiles (with randomly distributed non-zero elements)

Figure 3.1 visualizes the different tile types. The matrix variants are denoted
using the nomenclature XdYs, where X represents the percentage of dense
blocks and Y represents the percentage of structured sparse blocks, with the
remaining blocks being zero.
In the second benchmark, performance is evaluated for a matrix consisting
of entirely 2:4 sparse tiles to test the performance of sparse Tensor Cores in
isolation. Additionally, the size of matrix B is varied by changing the factor
N_Mult which determines the width of matrix B in blocks.

SuiteSparse collection

To evaluate performance in real-world applications, the kernels are additionally
tested on matrices used in various scientific fields (see Table 3.2), sourced
from the SuiteSparse matrix collection [17].

18



3.1. Experimental Setup

Domain Name Size nnz Sparsity
optimization mip1 66K⇥66K 10.4M 99.76%
quantum chem. conf5_4-8x8 49K⇥49K 1.9M 99.92%
2D/3D mesh cant 62K⇥62K 4M 99.89%
weighted graph pdb1HYS 36K⇥36K 4.3M 99.67%
fluid dynamics rma10 46.8K⇥46.8K 2.3M 99.89%
2D/3D mesh cop20k_A 121K⇥121K 2.6M 99.98%
2D/3D mesh consph 83K⇥83K 6M 99.91%
structural shipsec1 140K⇥140K 7.8M 99.96%
circuit simulation dc2 116K⇥116K 766K 99.99%

Table 3.2: Selected matrices from the SuiteSparse matrix collection

Figure 3.1: Visualization of matrix tiles that synthetic matrices are composed of (grey
cells correspond to nonzero entries)
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Figure 3.2: Throughput comparison of SpMM kernels on synthetic matrices. Matrices are
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Figure 3.6: Throughput performance (TFLOPS) of different SpMM kernels across various
real-world matrices. Kernels are abbreviated: T (Mma-T), BT (Mma-BT), CBT (Mma-CBT),
ST (Mma-ST), ST-L (Mma-ST-large), OBT (Mma-OBT), OBTS (Mma-OBTS), OBTS-L
(Mma-OBTS-large), OBTS-S (Mma-OBTS-large-separate).
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Figure 3.7: Execution time (ms) of different SpMM kernels across various real-world
matrices. Kernels are abbreviated: T (Mma-T), BT (Mma-BT), CBT (Mma-CBT), ST (Mma-
ST), ST-L (Mma-ST-large), OBT (Mma-OBT), OBTS (Mma-OBTS), OBTS-L (Mma-OBTS-
large), OBTS-S (Mma-OBTS-large-separate). Lower values indicate better performance.
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Chapter 4

Discussion of Results

4.1 Sparse Tensor Cores
Overall, the utilization of Tensor Core instructions substantially increases
computational throughput. The mmaST kernel demonstrates only marginal
performance improvements over its dense counterpart, the mmaT kernel, and
even exhibits lower performance than the mmaT kernel in scenarios with very
low density. This limited improvement can be attributed to the fact that com-
putation constitutes only a small fraction of the kernel’s overall latency; conse-
quently, a reduction in computational latency yields only a minimal decrease
in total kernel latency. Performance improvements become significantly more
pronounced when leveraging the doubled tile size in the mmaST_large kernel,
where 16x32 tiles of matrix A are processed in the Tensor Core instead of 16x16,
resulting in double the throughput compared to the baseline mmaT kernel in
the 0d_10s case. Interestingly, the synthetic benchmarks reveal noticeable
throughput improvements even when processing dense tiles exclusively. One
possible explanation for this behavior is what could be described as a form of
thread tiling: recall that in the dense case, two 16×16 tiles are processed sequen-
tially to align with the expanded 16×32 layout used for sparse tiles. To support
this, two shared-to-register loads are issued, which the hardware may be able
to fuse into a single wider memory load. As a result, the same amount of
data transfer can serve a larger amount of computation, increasing arithmetic
intensity and potentially improving overall kernel efficiency. However, this
remains a hypothesis, and further low-level profiling would be required to
confirm whether such memory load coalescing is indeed occurring.

4.2 Pipelining
The pipelining optimization provides a consistent performance improvement,
with the mmaOBT kernel outperforming its baseline mmaBT kernel by approxi-
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4. Discussion of Results

mately 1.4x across all synthetic and real-world matrices. This improvement
can be explained easily, as apart from a constant pipeline initialization and syn-
chronization overhead, the overlap of memory and compute reduces execution
time to the shorter of the two stages.

4.3 Tiling
The performance metrics for the tiled kernel illustrate how the substantial
improvements achieved in dense matrix multiplication with this method do
not necessarily extend to sparse matrices. With the high-sparsity matrices
benchmarked in Figure 3.2, the problem of explicitly stored zeros becomes
evident as the mmaOBT_tiled kernel significantly underperforms against its
baseline mmaOBT kernel. In the ideal case of entirely nonzero tiles (presented
in Figure 3.5), however, this issue is mitigated since all tiles contain non-
zero elements. Consequently, performance improvements similar to those
observed when applying this optimization to dense matrix multiplication
kernels become apparent, with the mmaOBT_tiled outperforming all other
kernels in this case. This clearly indicates that tiling optimization is primarily
beneficial for matrices with very low sparsity.

4.4 Separation of Dense and Sparse processing
Onemight reasonably anticipate that the combination of pipelining and sparse
Tensor Cores would yield cumulative performance gains from both optimiza-
tions, thereby surpassing kernels that implement only a single optimiza-
tion. However, empirical observations reveal that the combined mmaOBTS and
mmaOBTS_large kernels fail to exceed the performance of the mmaOBT kernel
and, in certain instances, also underperform relative to the mmaST kernel. This
performance deficit can be attributed to the branching mechanism employed
to select between dense and 2:4 sparse code paths during the loading and pro-
cessing phases. The disparate latencies of these two code paths induce pipeline
imbalances, diminishing the degree of parallelism achieved through pipelin-
ing. As discussed in the Optimizations chapter, this branching mechanism
additionally constrains compiler optimization opportunities and potential
performance gains through instruction-level parallelism.
The mmaOBTS_large_separate kernel eliminates branching by segregating
dense and sparse tiles during the preprocessing phase. This enables the effec-
tive integration of both optimizations, establishing it as the highest-performing
kernel across all 2:4 sparse synthetic matrices, with throughput being up to
1.83x higher than the mmaBT kernel and up to 13.4x higher than the mmaT ker-
nel. In the case of the SuiteSparse matrices, however, it does not consistently
achieve optimal performance, with the mmaOBT kernel demonstrating superior
performance in numerous instances. The underlying cause becomes evident
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4.5. Conclusion

upon detailed examination of the respective matrices’ structural properties.
Although these matrices exhibit high overall sparsity, they frequently contain
patterns that render most blocks incompatible with the 2:4 sparse format.
For instance, the cant matrix contains only 7.8% of nonzero blocks that con-
form to the 2:4 sparse pattern, with the remainder being completely dense.
Conversely, in the mip1 matrix, where mmaOBTS_large_separate outperforms
mmaOBT, 33.8% of all nonzero blocks exhibit 2:4 sparsity.
Examination of the respective densities of these matrices reveals that overall
sparsity demonstrates minimal correlation with the proportion of 2:4 sparse
blocks, as even a single violation of the 2:4 sparse property, such as three
nonzero values positioned adjacently, results in the entire tile being classified
as dense. Under these circumstances, the overhead introduced by the sparse
main loop diminishes the performance of mmaOBTS_large_separate relative
to mmaOBT, relegating it to second-best performance in numerous instances.

4.5 Conclusion
In this thesis, we investigated whether 2:4-sparse Tensor Cores, in combina-
tion with additional kernel optimizations, can achieve a ≥1.5× speed-up over
state-of-the-art dense-core BCSR SpMM for matrices with at least 30% sparse-
compatible tiles. Our results show that such speed-ups are indeed possible
under the right conditions, demonstrating the potential of sparse Tensor Cores
to improve computational efficiency in real-world applications. However, the
strict 2:4 sparsity constraint significantly limits the range of matrices that bene-
fit from this optimization and adds considerable kernel complexity. In contrast,
pipelining proved effective across a much wider set of matrices, delivering
consistent performance improvements. Tiling offered limited gains due to
the cost of handling explicitly stored zeros, and is most useful for dense or
uniformly sparse matrices, which may be better served by existing GeMM
approaches. Overall, sparse Tensor Cores offer a promising but narrowly ap-
plicable acceleration path, best leveraged in conjunction with broader, more
generally effective techniques like pipelining.
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Chapter 5

Further Areas of Improvement

An additional optimization would be to combine sparsity, pipelining, and
tiling in an mmaOBTS_large_tiled kernel. Each tile could also utilize a sparse
representation such as CSR to only specify nonzero internal blocks, circum-
venting the problem of explicitly stored zeros. However, it remains unclear
whether this approach would effectively address the challenges of tiling in
highly sparse matrices, as a low density of nonzero blocks per tile would
diminish the expected memory loading improvements. Furthermore, we must
consider that the performance gains observed in our current implementation
primarily arise when target blocks in a single row or column reuse the same
row or column of the A and Bmatrices. As sparsity increases, the probability of
such alignment decreases significantly, potentially negating any performance
advantages.
Additionally, it would be valuable to exploit the capabilities of newer tensor
core hardware found in NVIDIA’s Hopper and Blackwell generation GPUs.
The Hopper architecture introduced sparse and dense tensor core instruc-
tions that operate across multiple warps rather than a single warp, enabling
larger tile sizes up to 64⇥256⇥16. This generation also introduced the Tensor
Memory Accelerator (TMA), which significantly enhances memory through-
put between global and shared memory—addressing a key bottleneck in our
current kernel implementations.
Lastly, as reduced-precision number formats such as FP8 or FP4 become in-
creasingly relevant in machine learning applications, adapting these kernels
to such highly quantized formats represents a promising direction for future
research. These formats could potentially offer further performance improve-
ments while maintaining acceptable accuracy for many machine learning
workloads.
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